
AD-A277 566
(II•tIHIlII•u~ Computer Science

Dialog Structure and Plan Recognition
in Spontaneous Spoken Dialog

Sheryl R. Young

June 1993
CMU-CS-93-199

DTIC
ETECTES • MAR 3 11994

,,Carnegie
Mellon

i(94-09743

94 8 31 048

Best
Avail*able

Copy

Dialog Structure and Plan Recognition
in Spontaneous Spoken Dialog

Sheryl R. Young

June 1993
CMU-CS-93-199

School of Computer Science
Carnegie Mellon University

Pittsburgh, P! 15213

This research was sponsored by the Department of the Navy, Naval Research Laboratory under Grant
No. N00014-93-1-2005; and by the Department of the Navy, Office of Naval Research under Grant No.
N00014-93-1-0806.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of NRL, ONR, or the U.S.
Government.

AD NUMBER DATE DTIC ACCESSION
NOTICE

R.•QESTER
1. REPORT IDENTIFYING INFORMATION

1. Put your mrading address
ORIGINATING AGENCY vee of form.

j\LAA& ~U .-6-.- ~3J NV 2. CcvTpVeteigems i and 2
B. REPORT TITLE AND/OR NUMBER

3. Attach torm to reports
matled to 0 TIC.

C. MONITOR REPORT 1AUMBER 4. Use unclassified
informahin only.

5. Do not order document
D. PREPARED UNDER CONTRACT NUMBER for 6 to 8 weeks.

2. DISTRIBUTION STATEMENT

1. Assign AD Nuntmer.

(-A 2. Return to requester.

DTIC Form 50 PREVIOUS EDITIONS ARE OBSOLETE
DEC 91

K

Abstract

In real spoken language applications, speakers interact spontaneously and frequently diverge
from the task at hand by initiating various types of domain, application or environmentally re-
lated subdialogs. We claim that unconstrained, task-oriented spontaneous spoken dialog is struc-
tured and predictable in spite of such phenomena as spurious topic changes and subdialogs. The
discourse structure for any specific dialog is derived from the structure of the task, contextual
constraints derived from prior interaction and the characteristics of a finite set of discourse plans
responsible for subdialogs and topic changes. This paper describes a preliminary model of dis-
course structure and plan recognition for spontaneous spoken discourse that has been im-
plemented and evaluated on a 5000 utterance test corpora drawn from two distinct spoken lan-
guage applications. The model dynamically constrains a speech recognizer, simplifies the
process of inferring meaning from a spontaneous spoken utterance and accounts for the sub-
dialog phenomena observed. We describe these discourse plans, constraints on their occurrence
and content, and their representation and processing. The model processes all subdialog
phenomena using a domain plan tree, a current focus stack and a set of domain tree traversal
algorithms.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced El
Justification

By
Distribution I

"Availability Codes

Avail and I or
Dist Special

1. Introduction
Discourse has been studied from the point of view of plan recognition [6, 8, 31, speech acts
[11 and domain independent properties of discourse structure [5, 2]lnferring a speaker's under-
lying plans and intentions assists in interpreting both what is stated and what is implied and
intended. The advent of large corpora of real, naturally elicited dialogs from multiple applica-
tion domains have provided many examples of spontaneous spoken discourse. They have en-
abled researchers to identify, characterize and model domain independent discourse properties of
task-oriented dialogs. Spoken language system [SLS] applications enable researchers to empiri-
cally evaluate their discourse models and plan inference and tracking methods for thoroughness,
coverage and explanatory utility. This is because SLS permit evaluation of both language under-
standing capabilities and any associated spontaneous speech recognition effects that result from
specifying how prior discourse will constrain the next actions a speaker can take, or what can be
said next.

Domain Plans. Until recently, SLS discourse models focused solely on domain plans. These
systems coupled domain plans with semantic and pragmatic knowledge and inferencing
procedures to compute set of "next actions" [10, 7, 91. Domain plans refer to utterances where a
plan step is described or implemented. For each application, it is possible to develop an applica-
tion specific, generic set of hierarchically organized plans that include all plans that could be
executed during an interaction. Development of a domain plan tree is normally guided by the
nature of the problem solving or information seeking task and by the structure of the task itself.
including the semantic relations among objects, attribute, actions, etc.

The use of domain plans to represent task structure, and plan inference and tracking was first
introduced in the late 1970's [41 for interpreting task-oriented dialogs. This work illustrated that
topics of conversation in a task-oriented dialog could be anticipated by representing the semantic
attributes of the task and tracking the progress of the plans of the conversants as the task was
executed. By associating specific objects, attributes and actions with each plan step a speaker
could execute during a dialog, similar objects could be uniquely identified and objects in focus
could be computed.

More recently, hierarchically structured domain plans have been shown to be extremely powerful
tools for significantly enhancing overall system performance by improving a SLS's ability to
infer utterance meaning in applications that involve information seeking, problem solving-and
task oriented dialogs. These systems adopt a plan-tracking and inference approach to natural
language understanding and are usually able to circumscribe or predict the content of a "next
utterance" or input by eliminating interpretations that would be meaningless, redundant or incon-
sistent from consideration. Generally, these predictions are derived by tracking currently active
domain plans and applying semantic and pragmatic constraints computed by propagating contex-
tually appropriate intormation obtained or implied by earlier interaction. When incorporated in a
general interactive, integrated or feedback architecture, these predictions significantly enhance
overall system performance further because they can be used to dynamically constrain'the active
lexicon used to process an incoming utterance. By dynamically modifying the lexicon / lan-
guage model and grammar, eliminating many words from consideration during the speech recog-
nition, the search space for words is significantly reduced and recognition performance is
thereby significantly improved.

Discourse Plans. However, prediction capabilities based solely upon a representation of domain
plans cannot cope with spontaneous discourse produced when speakers are unconstrained and
speak naturally and spontaneously. The traditional plan tracking approach runs into trouble
when faced with subdialog phenomena, inclusive of clarifications. corrections and topic changes.
To deal with situations where a one cannot track the dialog exclusively by looking at the don,'uin
plans for accomplishing the task in a hierarchical, stepwise format alone. Litman introduced the
notion of discourse plans [61. Discourse plans specify the type of action a user can execute (ver-
bally) in the dialog. They include such actions as "continue" the current domain plan, "begin a
subdialog", for example, to "clarify" the last input or database / other speaker response or "in-
itiate a topic switch" to ask a question about the currently active external environment (e.g.
"Where can I find a newsstand?" or "Display that again"). Discourse plans, or the types of

actions a user can initiate to control the dialog, are domain independent. When speakers interact
naturally, even cooperative users tend to digress and clarify. Discourse plans describe these
digressions as well as the normal domain plans or domain relevant discussions in terms of how
these actions effect or control the dialog. At each point in the discourse interaction, only a
limited set of discourse plans can be executed. To process spontaneous spoken dialog, it is
necessary to take discourse plans as well as domain plans into account.

Overview. We claim that spontaneous spoken dialog has a predictable structure that is defined
by the properties of discourse plans and their interaction with the domain plans for an applica-
tion. These structural properties dictate "what can occur when". They indicate what topics can
be "switched to" at any given point in the dialog, what information can be clarified, and what
types of subdialogs can be initiated at a given point in time. Further, they place constraints on
the objects and attributes available for reterence. We have implemented our model of discourse
structure in a SLS [121 that exploits these properties to dynamically constrains both the speech
recognition and utterance comprehension processes.

In this paper, we describe our model of spontaneous spoken discourse for spoken language sys-
tems. We identify and describe the range of discourse plans observed in the training sets from
four distinct SLS applications and the conditions under which they can appear. Specifically dis-
cussed are continuation subdialogs, clarification, confirmation and correction subdialogs, and
topic chan es and resumptions. Our descriptions include what's available for reference Und im-
plications 'or tuture utterances. The paper presents our unified algorithm for recognizing dis-
course and domain plans and using them for predicting future actions and propagating con-
straints derived from information introduced earlier in the dialog.

Basically, our system "predicts" the types of "next actions" or discourse plans that can be ex-
ecuted next and constraints on the sets of parameters associated with each of the potential ac-
tions. We try to answer the question "How does prior discourse constrain what can happen
next?" The system has been evaluated by processing over 5000 spontaneous spoken utterances
collected from two domains. The first domain is composed of mixed initiative dialogs where
subjects order lunch from a pizzeria. We have 2,600 utterances in this test set. The second
domain is from ARPA's ATIS or air travel information domain. These are user initiated dialogs
where the computer responds by displaying information contained in the airline's OAG database.
We have 2350 test utterances from ATIS.

2. Discourse Plans: The Taxonomy and Basic Processing
In real applications, speakers frequently diverge from the task at hand by initiating various types
of domain, application or environmentally appropriate or related subdialogs. These behaviors
range from initiating a clarification subdialog, to either modify their last input or to request an
explanation of the response, to requesting information about their external environment, as in
"scroll the screen down" or "where can I buy a newspaper? ". Based upon our corpora, we have
developed a taxonomy of discourse plans.

The taxonomy is based upon the function served by the subdialog or discourse plan in the larger
interaction. While there have been a few other attempts at categorizing discourse plans [6, 21,
ours differ in that they are computationally implemented in an operational spoken language sys-
tem and are based primarily upon the use of a domain plan tree and a current focus stack. Our
taxonomy focuses on how the subdialog changes the on-going dialog. Our basic types are
generated by grouping those phenomena that can be computationally represented and processed
in a distinct manner. Here, we indicate the types of phenomena included in each category and
provide illustrative examples. We describe their prevalence in our test domains, when they can
occur, what information is available for reference and how each is represented. Finally we
describe what information is propagated to the "main dialog" and available for future reference.
We have identified the following discourse plans:

* Discourse Plans:
Continue Domain Plan (56 - 58% utterances)

3

"• Begin Subdialog:
* Clarification (2% - 10% utterances)
* Confirmation (<1 - 2.5% utterances)
* Correction

- correct due to confirmation (1% utterances)
- correct due to plan failure (24-35% utterances)

"• Initiate Topic Change:
* New domain plan (4.5 - 12% utterances)
e External Context (<1% utterances)
* Historical Context (0% utterances)

2.1. Clarifications
Clarificational subdialogs either clarify the user's question / statement or the response obtained.
When the response is clarified, the user or machine can ask about the range of values acceptable,
the meaning of some item contained in the response, an attribute of a value that is part of the
range of acceptable responses, or an attribute ot one of the items named in the response. Often,
clarifications are used to obtain information required for performing the required task. For ex-
ample, consider the following:

Would you like any toppings?
Brie, camembert, mushrooms and olives
We don't have brie and camembert
* *Do you have cheddar?
• *Yes
* *How much is pepperoni?
**All toppings are 75 cents
OK, mushrooms, olives, cheddar and pepperoni
"*Black or green olives?
* * Black

This example illustrates that clarificational subdialogs can be nested and initiated by either con-
versational participant. Clarification dialogs were prominent in our data. Their content does not
affect the domain plan tree except in those cases where a speaker clarifies their input by asking
an essentially different question (or giving a different response) that opens a different node in the
domain plan tree. Normally, the clarification serves to provide additional information. We
represent the content of clarifications and nested clarifications in a focus stack as illustrated in
Section 4. The only information available for reference in a clarificational subdialog are the
objects and attributes contained in the immediately preceding turn. Hence, when a nested
clarification is initiated, the only information available for reference is information in the last
clarification turn. No information from a clarificational subdialog is propagated into the "main
discourse" and the domain tree is not modified.

2.2. ConfirmationsConfirmation subdialogs can only occur at the end of a subtask, or when a domain subtree is
complete. For example, in the ordering scenario (see Figure 1), pizza specifications can be con-
firmed at three possible places in the dialog, 1) immediately after the pizza is specified, 2) when
all the food is ordered, or 3) when the dialog is nearing completion and the entire order has been
completed. A confirmation can be initiated by either conversational participant to verify that
they have understood correctly. Each item in the applicable completed unit can be verified and
is available for reference. Confirmation are often followed by correction subdialogs, and occur
when the information to be confirmed is incorrect.

We process confirmation subdialogs using the domain tree alone. All completed nodes in the

4

applicable subtree are temporarily re-activated by a clarification until they have been discussed
or the confirmation is complete. The following example illustrates a confirmation subdialog
responded to with a correction subdialog (starred).

OK flight 49 on US Air leaves Pittsburgh
at 5:07p.m. arrives Los Angeles at 8:05 p.m.
on November 15. Cost is $1159.
* *No that was for $629.
"**All seats are sold for that fare class.
* *Do you have any seats on an earlierflight for $629?
**There's one seat left on the 9:05 am flight

2.3. Corrections
Correction subdialogs are initiated under two conditions, when a confirmation fails or when
there is a plan failure. These two are grouped together because both serve to re-activate a com-
pleted portion of the domain tree. Plan failures are easily detected, normally the user will en-
counter a null database response or be explicitly informed of a plan failure. For example, they
will not be able to get a cheap fare on a dinner flight, or there will be insufficient resources in a
resource limited problem solving domain. Similarly, following specification of toppings and
size in a pizza ordering domain, the user finds out that you cannot get a small thick crust pizza.
only medium and large sizes come with extra thick crusts. Plan failures occur when a user can-
not fulfill all their requirements simultaneously. They are followed by a re-planning phase
where the user must prioritize goals and then abandon one or more.

In our system, when a plan fails, all the specifications up to and including the point of the failure
become re-activated in the domain tree. On the other hand, when a correction is initiated in
response to a confirmation failure, the relevant nodes are already activated and only the node
where the failure occurred and nodes that are causally related to it are available for reterence and
reexamination during the correction phase. So, in the above pizza example, the toppings. crust
and size nodes would all become active until the user modified their specification. Correction
subdialogs should not be confused with clarification subdialogs when a speaker clarifies and cor-
rects the interpretation of their last input. Corrections only follow confirmations or plan failures.

2.3.1. Changing Topics

We have identified three types of topics switching phenomena:

1. Domain Goal - when a second or additional domain goal is initiated,

2. External Environment - when the user asks a question or makes a request about the im-
mediate, (modelable) external environment, and

3. Historical Context - when the user switches topics to resume or follow up on a discus-
sion that took place at an earlier point in time.

The system can process the first two. Consider the following:
Show flights from Pittsburgh to Boston
Show flights from Boston to Denver
List flights from Denver to Pittsburgh

I need a ticket for flight 286 to Boston
That will be $358 one way
<conversation continues>
"**Where can I buy a pack of cigarettes?
* *Just past the banking machines on the left is a newsstand
OK, and which way to gate 21?
That's gate 36.
We will begin boarding in 15 minutes.
**Do I have time to go to the newsstand?

To process topic changes manifested as additional goals to be fulfilled (as in the first example),

5

the system generates a second or additional instance of a domain tree and places the new domain
topic on the active focus list. Hence, after processing the first example. there would be three
active main plans on the focus stack and three instantiations of the domain plan tree. When one
of the goals is completed, it is assumed that the speaker will return to the other ones. Generally,
multiple topics are introduced in the beginning ot a dialog and then one is pursued to completion
before the other(s) are begun. (In fact, we have not seen a single instance where multiple topics
have been introduced at any place other than the beginning of a dialog. Further, we have not
seen a single instance where an introduced topic has not been pursued later in the dialog.)

To process topic changes where a speaker initiates a query about the immediately surrounding
environment, it is necessary to directly model the environment. Today's technology does not
permit us to model all attributes in a face to face environment, such a what a person is wearing or
where they are gesturing. However, we can model the standard external environment of the
system user and of a domain plan. For example, we can model the fact that a user is interacting
with a terminal screen, or that a user is standing in at an airport ticket purchasing desk that is
located in the main terminal building along with restaurants, newsstands, bars, etc. By activating
the context in which an interaction takes place and the surrounding context of the query (e.g.
questions about gates refer to the gate area, outside the main terminal) we can anticipate most
external environment requests. Our data indicates that these requests occur immediately after a
subtask is completed (e.g. once ticket purchase exchange is complete, ask about main terminal
area), or when there is a change in the external environment (i.e. new information is printed on
the screen and the user asks for a redisplay).

3. Data Structures and Processing
Our dialog system relies upon a domain specific structured knowledge base that contains a
representation of the plans that can be executed in the application domain and a focus stack. The
knowledge base must be generated for each application domain. However, the algorithms
responsible for plan inference and tracking, constraint propagation, general inferencing and for
processing subdialogs, plan failures and other discourse plans are constant across applications.
The basic idea underlying the system is that by tracking all information communicated it is pos-
sible to infer speaker goals and plans and tracking progress. Further, by tracking progress, it is
possible at each point in the dialog to specify or predict the types of discourse actions that can be
taken, their relative probabilities (must be computed separately for each application) and con-
straints upon the content of each of the applicable discourse plans. These "predictions" can then
be used for better inferring utterance meaning, for detecting misrecognitions and to dynamically
generate grammars for reprocessing misrecognized input [12] or to guide the initial recognition
process.

The domain knowledge base represents all objects, attributes, values, plans, goals and the en-
vironment in which the actions and plans are executed. It uses a standard frame-based represen-
tation to represent knowledge and is composed of four componenent knowledge bases each
represented in a "plane". Information about objects, attributes and values are stored in "one
plane" of the knowledge base, action and event information in a second, information about plans
is stored in a third and goals are stored in a fourth plane. Within a plane, we have standard
tangled inheritance networks and multiple relations among frames and frame slots. However,
inheritance and inferencing across planes is somewhat more structured. For example, actions
involve objects, their attributes and values. An action can activate a plan step. Plans contribute
to the satisfaction of goals. In this way, we can limit spurious inferences and represent actions
differently than plans which are different than objects and attributes, etc. Consider the simple
task of ordering lunch from a pizzeria. The object plane of the knowledge base represents pizza
and that pizzas come in different sizes, whose values are number of slices or diameter, have
different types of crusts and have a set of toppings, including the defaults of tomato sauce with
spices and mozzarella cheese. We also encode that the pizza is an edible object as are the top-
pings. The toppings include meats, vegetables, cheeses and fish. Since a pizza is a solid, edible
object, we know that it can be cut.

The knowledge base plane for domain plans is structured as a hierarchical AND / OR tree. Plans

6

order fed esamb fs

Order to" fobom oo

ordr pzza ordr dins pickup deby (cashl check credit cardl

Quntii -o sizce! bankrKIN Ig~oe
size Ole ig quielitl crust default hwe plc o

chualqe
toe~ cadcel ifetbs address

Figure 1: Domain Tree for Pizza Task

are hierarchically organized, allowing for abstractions and least commitment planning. Ordering
constraints among plan steps are encoded as both preferences (e.g. order food, then payment and
delivery) or required preconditions, and are represented in control schemas. We also encode ex-
clusive OR relations among plan steps to represent alternate methods for achieving the same end
(e.g. delivery or carry-out). Each node in the plan hierarchy is indexed to a set of actions and
objects and attributes involved in satisfying the plan part. These sets of action and object com-
binations are either "required" or "optional". Further, the plan steps themselves are marked as
optional or required for solving the problem. We permit the optionality value of a node to be
conditional upon other aspects of the dialog. Finally, general semantic and pragmatic knowledge
is associated with each node in the plan tree. This knowledge places the plan step and its as-
sociated actions and objects in the context of the overall purpose of the plan step.

The domain tree generated for a domain is "generic" and represents all ways of solving any
problem in the application domain. Whenever a speaker begins to solve a domain problem. an
instance of the tree is generated. The structure of the domain tree varies widely across problems
in the same domain. Information presented earlier in a dialog often serves to constrain the rest of
the dialog, pruning entire solutions paths from consideration and modifying or constraining the
actions and objects associated with yet-to-be-executed plan steps. As the discourse progresses,
the tree changes. In processing a dialog, the heuristics keep track of what nodes have been com-
pleted, what nodes are active and the relationship of the active nodes to inactive nodes (see
Figure 2).

The focus stack is used to keep track of currently active plans and subdialogs. It is a standard
push down stack. We also use it to keep track of certain types of subdialogs (e.g. clarifications).

The procedures and algorithms for traversing the domain tree, handling subdialogs and topic
switching and keeping track of what is active, what is complete, etc. are domain independent.
The domain tree traversal algorithms have been described previously [11, 101. Here, we over-
view them to show how they must change to permit discourse plans and subdialogs to be
processed. Basically, we deal with both discourse and domain plans by predicting "what can
come next" and then match the current utterance representation again the alternate predictions to
see which is most closely resembled. We use a single control structure for recognizing domain
plans and discourse actions, for constraint propagation and for generating future predictions [121.
The "no frills" tree traversal methodology states:

"* do not repeat completkd actions

"* continue a subtree until it is complete, completing all children nodes, followed by
non-excluded sibling nodes, etc.

* propagate constraints as you progress, eliminating subtrees and constraining how a
plan step may be realized as constrained by discourse information

7

The idea is to trace through the tree, hierarchically, pursuing each subtask, in any requisite order
until complete. Inapplicable subtrees (due to exclusive OR's) are pruned as they become ob-
solete. Constraints on how a plan step may be executed are also propagated as they are inferred
or entailed b,, ,he discourse. The active and yet-to-be-completed tree nodes are used to predict
what can c,-ne next.

However, the incorporation of discourse plans conditionally modifies the first two "rules".
Clarifications may be initiated after each turn but are restricted to either correcting the inter-
pretation of what was just said or to acquiring information about only what was newly presented
in the turn. Confirmations. and resultant correction subdialogs can only be initiated when a
subtree or subtask is complete, before continuing on to a sibling or parent subtree or node. Their
content is restricted to some or all of the content discussed in the preceeding subtask. For ex-
ample, a confirmation may address any and all aspects of what was ordered in the pizza domain.
once the order is complete or once the task is complete. Corrections resulting from confir-
mations are restricted to the active topic being addressed at that point in time in the correction
subdialog. Multiple domain goals andplan lailures were handled by the initial algorithms. Fur-
ther, no modification is made to the constraint propagation algorithms except that external con-
text must be explicitly modelled so that modifications or changes can be anticipated and we
predict external environment topic switching.

In sum, the addition of discourse plans only slightly modifies existing domain tree traversal
heuristics yet they permit systems to predictively account for subdialog phenomena. The domain
tree is traversed as previously [10, I1 with three exceptions. First, the system looks for poten-
tial clarifications after each interaction. Second, end of subtree herusitics are modified to also
look for confirmations. If an when confirmations are found, the system will anticipate potential
correction subdialogs should a confirmation fail. The correction subdialog algorithms substan-
tially follow previously established techniques for processing plan failures. Finally. domain tree
traversal is modified to permit environmental topic changes by tracking environmental correlates
of plan steps and any user displays. The system hence adds the prediction that whenever the
environment changes or will change with tie next domain plan part, a topic switch may tem-
porarily interrupt the on-going domain plan.

4. Illustrative Example: Representation and Tracking Subdialogs
To illustrate how processing proceeds, we present the following example of a clarification sub-
dialog in the pizza ordering domain.

1. Pizza Parlor
2. I'd like to order a pizza
3. What size?
4. What sizes do you have'?
5. Small, medium and large
6. How big's a medium'?
7. 12 slices
8. A small?
9.8

10. OK, I'll take a small

To illustrate how this dialog is processed Figure 2 traces the the current focus stack and the state
of the instantiated domain graph as it is modified by processing the utterances in the example
dialog. At the start of the dialog, an instance of the complete domain tree (Fig. I) is generated.
The generic tree permits speakers to order different types of food and drinks and has alternate
methods for both obtaining and paying for them. The system uses its copy of the tree to mark
what is active and what has been completed as we process the dialog. The focus stack keeps
track of abandoned topics, current topics and the state of the clarification. It begins empty.

I'd ms to ord r o) order
o$erdor feId

Qze

(Uea# size?

Szza order-Pizzo
<d,,z. i o• ,,tsz order- fod

WIDNI sizes erae iladeale?

order

order
active nodes

Ie ize!5

Smell. medl1mWerile Ordii;-peizo!_it _ onW-,ooo '

order

l\\a\q. size ze-enswer
esize

A
answerSorder-pizza

order-food
order

8 sflcesNow big's a medium?

1cas•- s iz-ces

clarify slze

ardeir-pizze
S ord..lore r

oeorderfo

OIl kea s mall

L odr pizza

I o aril-moo lum

or errid size

Idei oorder pzz.
andcive node..- T

(•) .• odorrdoo

l ordl-lnZZorder-Jpizza

L o erf.. Iore-ood.
erorder

size

9

stack shows order food, order pizza and size, processing the size question as a continuation of
current plan. Nothing can be confirmed until a "unit" is complete, for example. the unit of order
pizza, including all three required nodes of size, toppings and crust. However, attributes of
"pizza-size" are available for clarification. In fact, the next utterance asks just this, to clarify the
available values for size. To process this, the system will use only the focus stack. The domain
tree will remain unchanged and no information will be propagated to the later dialog from the
clarification phase. The answer "small, medium and large" introduces three attributes which can
be further clarified. Or, the speaker can terminate the subdialog and continue the domain plan by
specifying a size. The focus stack shows that the initial clarification has been answered.

"Next, the user initiates a second clarification subdialog, requesting further information about the
sizes. Potentially, the user could ask individually about each of the attributes (e.g. diameter.
slices) of each size (sm, med, 1g.) before returning to the main dialog. If the user asked about
diameter, it would be to clarify their initial question "How big's a medium" effectively saying
"what is the diameter of a medium sized pizza." However, the user is satisfied with the number
of slices attribute only asks about two of the sizes and then terminates. At this point, the domain
tree records that the size node has been completed and predicts that the dialog will next focus on
either the toppings or size nodes. The focus stack records only what is still active, namely order
fizza. It should be noticed that the focus stack keeps track of the entire clarification subdialoiz.
Itdoes not pop until the entire subdialog is complete. In this way, we can keep track of what has
been completed without modifying the basic domain tree.

References
[I] Allen, J.

Recognizing Intentions from Natural Language Utterances.
In Brady, M. and Berwick, R. C. (editor), Computational Models of Discourse. pages 107-164.

MIT Press, 1984.

121 Allen, J. A.
Discourse Structure in the TRAINS Project.
In Proceedings of the DARPA Speech and Natural Language Workshop. pages 325-330.

February, 199 1.

[31 Ferguson, G. and Allen, J. F.
Generic Plan Recognition for Dialogue Systems.
In Proceedings of the DARPA HUman Lanague Technology Con 'erence. 1993.

141 Grosz, B.
The Representation and Use of Focus in a System for Understanding Dialogs.
In IJCAI-79, pages 67-76. Morgan Kaufmann, 1979.

[51 Grosz, B. J. and Sidner, C. L.
Attention, Intentions and the Structure of Discourse.
Computational Linguistics 12:175-204, 1986.

161 Litman, D. J. and Allen, J. F.
A Plan Recognition Model for Subdialogs in Conversation.
Cognitive Science i: 163-2(X), 1987.

171 Matrouf, K., Gauvin, J.L., Neel, F., Mariani. J.
Adapting Probability-Transitions in DP Matching Process for an Oral Task-Oriented Dialogue.
In IEEE International Conference on Acoustics. Speech and Signal Proc'essing. 1990.

10

18) Pollack, M.
Plans as Complex Mental Attitudes.
In Cohen, P.R., Morgan, J. and Pollack, M. E. (editors), Intentions in Communication. MIT Press,

1990.

[9] Smith, R. W., Hipp, D. R. and Biermann, A. W.
A Dialog Control Alorithm and Its Performance.
In Proceedings of the Conference on Applied Natural Language Processing, pages 6. 1992.

[10] Young, S.R., Hauptmann, A.G., Ward, W.H., Smith, E.T., Werner, P.
High Level Knowledge Sources in Usable Speech Recognition Systems.
Communications of the ACM 32(2): 183-194, 1989.

[11! Young, S.R.
Use of Dialogue, Pragmatics and Semantics to Enhance Speech Recognition.
Speech Communication 9((5/6)):551-564, 1990.

[121 Young, S. R. and Ward, W. H.
Semantic and Pragmatically Based Re-Recognition of Spontaneous Speech.
In Proceedings of the European Conference on Speech Communication and Technology. ESCA:

Paris, London, 1993.

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

3- (- !i (I) -W (

F~~~~e j1-'C a '3ý

Orcer[,rq %(J''C I-' ('i' to !t4 1'n)v~l a l,

P'.1'" 'U' ('''YJ 11 Cx .3 q Mr!'3. wt h U,,ý - 'e' 5000 1 Uvw PA F' S ! C ,irr

!(- '' oL ' y)" (4 2 i -'lUA !'3 '''' '~A11 33;p3 -f~ (8(6
4

0 '~

